

19th Workshop-School on Agents, Environments, and Applications

Perspectives on Regulation Adaptation in Multi-Agent Systems: from Agent to Organization Centric and Beyond

*Elena Yan, *Luis. G. Nardin, **Jomi F. Hübner, *Olivier Boissier, ***Jaime S. Sichman

*Mines Saint-Etienne, France, **Federal University of Santa Catarina, Brazil, ***University of São Paulo, Brazil elena.yan@emse.fr

Introduction

In multi-agent systems (MAS), agents' autonomy may lead the system into undesirable states

Regulations can be integrated into MAS to govern agents behaviors aligned with system goals

Motivation

Due to changing contexts (e.g., exogenous shock, persistent problem), regulations should be **adapted** to remain effective

→ different perspectives exist for regulation adaptation (e.g., agent-centric vs. organization-centric)

Objectives

Illustrate how regulation adaptation can be managed in MAS

Analyze the multiple perspectives on regulation adaptation in MAS

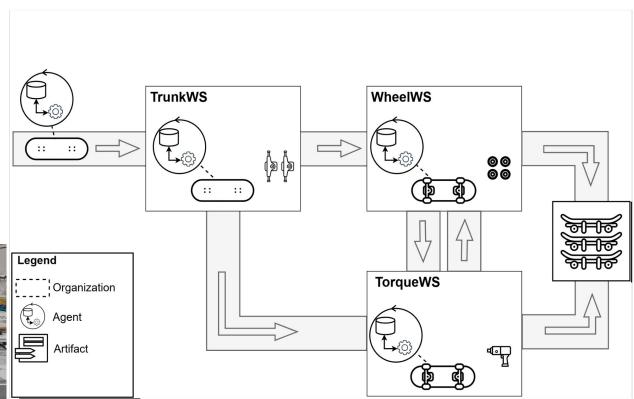
Case Study: The Skateboard Assembly Line

Objective: Assembly custom skateboards according to the orders placed by

customers

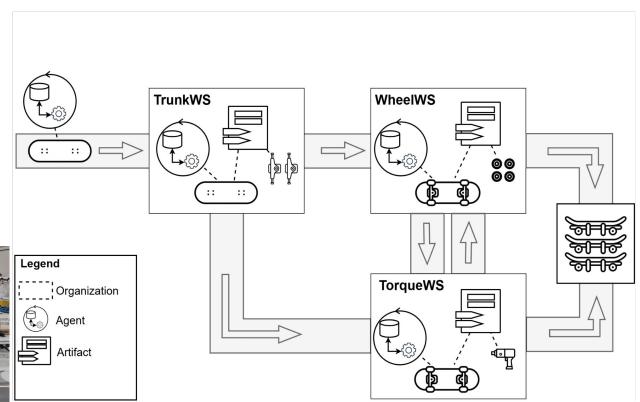
3 workstations:

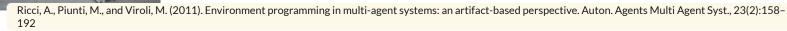
- TrunkWS
- WheelWS
- TorqueWS



Agent Dimension

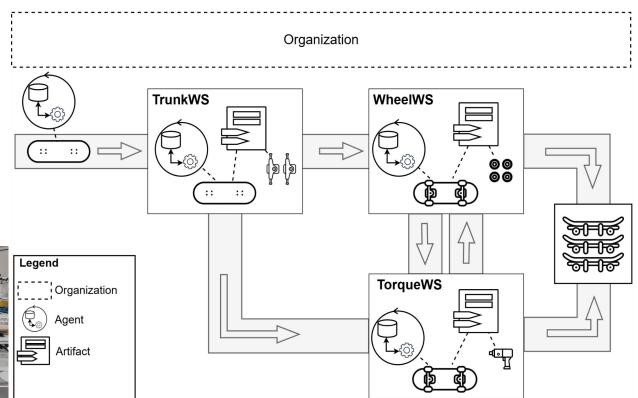
SkHandler Agents
responsible to handle the
skateboard SID according to
the order



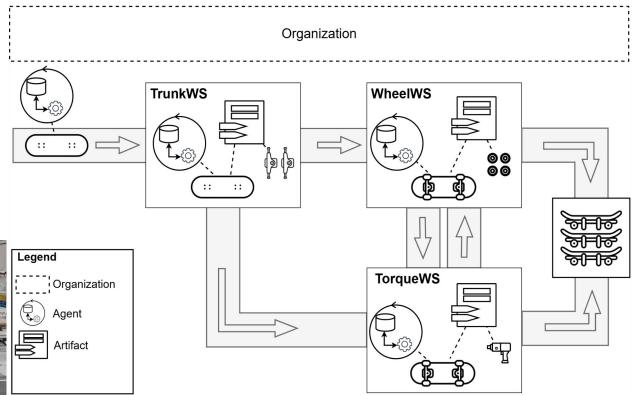

Shoham, Y. (1993). Agent-oriented programming. Artif. Intell., 60(1):51–92.

Environment Dimension

TrunkArt for installing the trunk
WheelArt for assembly the wheels
Torque Art for torque the trunk



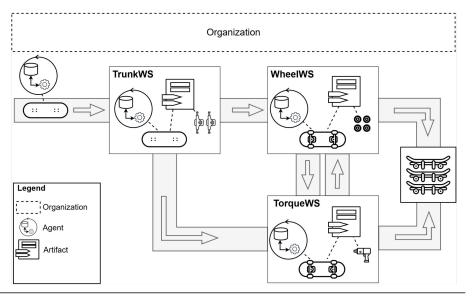
Organization Dimension


defines the roles and responsibilities of agents

Pynadath, D. V., Tambe, M., Chauvat, N., and Cavedon, L. (1999). Toward team-oriented programming. In Jennings, N. R. and Lespérance, Y., editors, Intelligent Agents VI, Agent Theories, Architectures, and Languages (ATAL), Proceedings, volume 1757 of Lecture Notes in Computer Science, pages 233–247. Springer.

Interaction Dimension

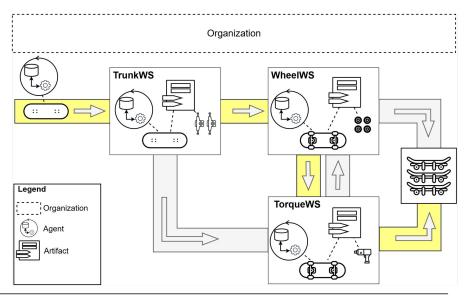
direct and indirect interactions among all dimensions



Regulation Management

Regulation representation

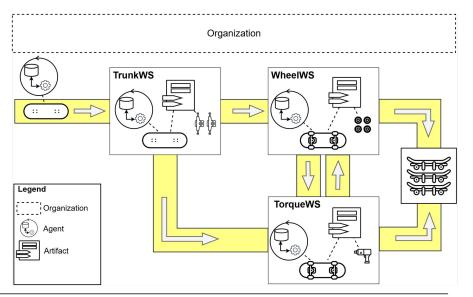
- constitutive norms
- regulative norms
- sanction rules


ld	Condition	Consequence	
R1	order_received(SID) ∧ ¬trunk_installed(SID)	Obligation(SkHandler, trunk_installed(SID))	
R2	$trunk_installed(SID) \ \land \ \neg wheel_assembled(SID)$	Obligation(SkHandler, wheel_assembled(SID))	
R3	wheel_assembled(SID) ∧ ¬trunk_torqued(SID)	Obligation(SkHandler, trunk_torqued(SID))	

Regulation Management

Regulation management capability

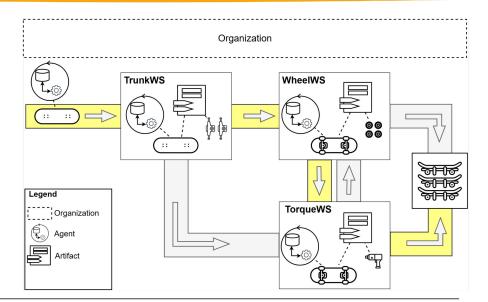
- regiment
- enforce
- adapt


ld	Condition	Consequence	
R1	order_received(SID) ∧ ¬trunk_installed(SID)	Obligation(SkHandler, trunk_installed(SID))	
R2	R2 trunk_installed(SID) A ¬wheel_assembled(SID) Obligation(SkHandler, wheel_assembled		
R3	wheel_assembled(SID) ∧ ¬trunk_torqued(SID)	Obligation(SkHandler, trunk_torqued(SID))	

Regulation Management

Regulation management capability

- regiment
- enforce
- adapt



ld	Condition	Consequence	
R1	order_received(SID) ∧ ¬trunk_installed(SID)	Obligation(SkHandler, trunk_installed(SID))	
R2	R2 trunk_installed(SID) A ¬wheel_assembled(SID) Obligation(SkHandler, wheel_assembled		
R3'	trunk_installed(SID) ∧ ¬trunk_torqued(SID)	Obligation(SkHandler, trunk_torqued(SID))	

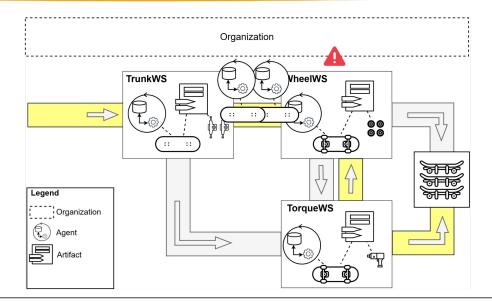
Adapt capability

- detect
- design
- execute

ld	Condition	Consequence
R1	order_received(SID) ∧ ¬trunk_installed(SID)	Obligation(SkHandler, trunk_installed(SID))
R2	$trunk_installed(SID) \ \land \ \neg wheel_assembled(SID)$	Obligation(SkHandler, wheel_assembled(SID))

wheel_assembled(SID) $\land \neg trunk torqued(SID)$ Obligation(SkHandler, trunk torqued(SID))

Yan, E., Nardin, L. G., Boissier, O., and Sichman, J. S. (2025). A Regulation Adaptation Model for Multi-Agent Systems. In 28th European Conference on Artificial

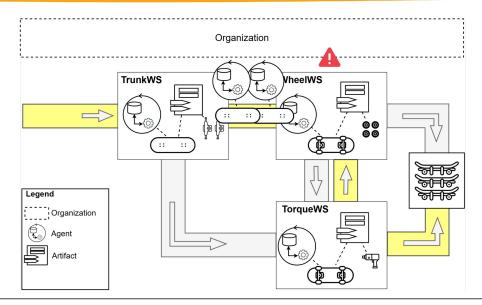

Intelligence (Accepted)

R3

Adapt capability

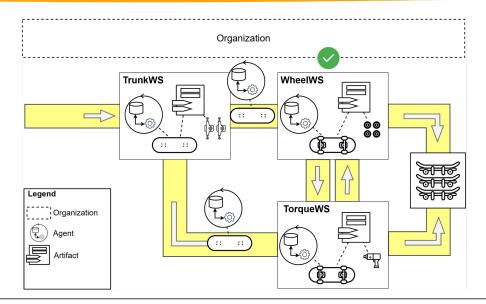
- detect
- design
- execute

R2	trunk_installed(SID)	Obligation(SkHandler, wheel_assembled(SID))
R1	order_received(SID) ∧ ¬trunk_installed(SID)	Obligation(SkHandler, trunk_installed(SID))
Id	Condition	Consequence


R3 wheel_assembled(SID) A ¬trunk_torqued(SID) Obligation(SkHandler, trunk_torqued(SID))

Adapt capability

- detect
- design
- execute

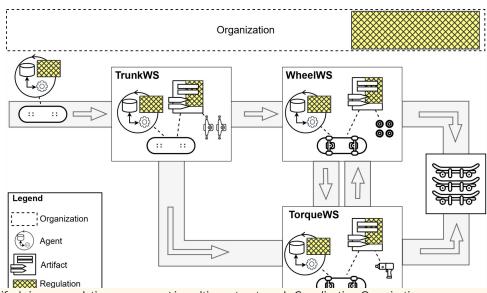


ld	Condition	Consequence	
R1	order_received(SID) ∧ ¬trunk_installed(SID)	¬trunk_installed(SID) Obligation(SkHandler, trunk_installed(SID))	
R2	runk_installed(SID) A ¬wheel_assembled(SID) Obligation(SkHandler, wheel_assembled(S		
R3'	3' trunk_installed(SID) ∧ ¬trunk_torqued(SID) Obligation(SkHandler, trunk_torqued(SID))		

Adapt capability

- detect
- design
- execute

R3'	trunk_installed(SID) ∧ ¬trunk_torqued(SID)	Obligation(SkHandler, trunk_torqued(SID))	
R2	$trunk_installed(SID) \ \land \ \neg wheel_assembled(SID)$	Obligation(SkHandler, wheel_assembled(SID))	
R1	order_received(SID) ∧ ¬trunk_installed(SID)	Obligation(SkHandler, trunk_installed(SID))	
ld	Condition	Consequence	



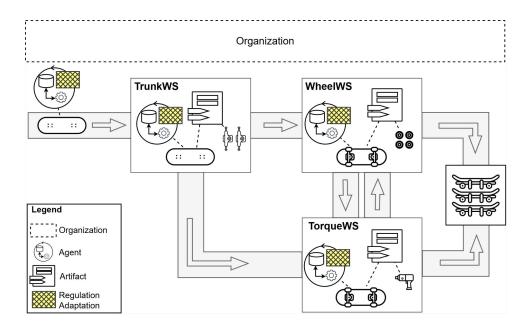
MAOP Dimensions Perspective on Regulation Adaptation

Regulation adaptation can be realized with **abstractions** and **mechanisms** of the MAOP dimensions, originating:

- agent-centric
- environment-centric
- interaction-centric
- organization-centric
- hybrid-centric

regulation adaptation

Yan, E., Nardin, L. G., Boissier, O., and Sichman, J. S. (2025). A unified view on regulation management in multi-agent systems. In Coordination, Organizations, Institutions, Norms, and Ethics for Governance of Multi-Agent Systems - International Workshop, COINE 2025.

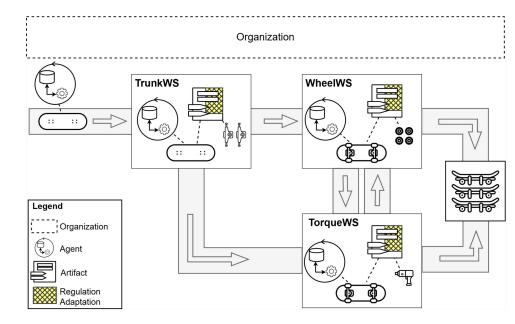


Agent-Centric Regulation Adaptation

- Regulation representation
- Adapt capability (detect, design, execute)

Agent Dimension (e.g., beliefs, plans, goals)

- ✓ fast and localized
- **X** inconsistency

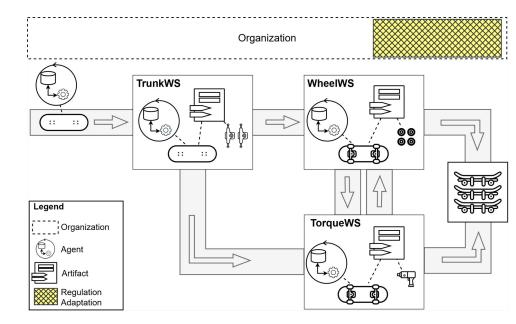


Environment-Centric Regulation Adaptation

- Regulation representation
- Adapt capability (detect, design, execute)

Environment Dimension (e.g., properties, operations)

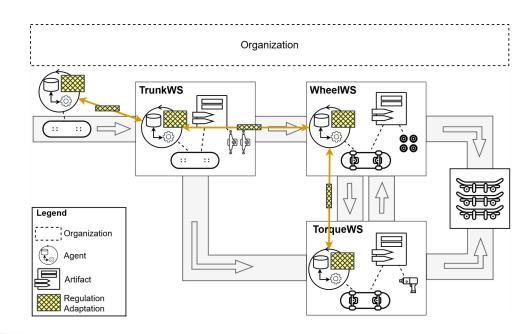
- embedded and automated
- **X** no decision



Organization-Centric Regulation Adaptation

- Regulation representation
- Adapt capability (detect, design, execute)

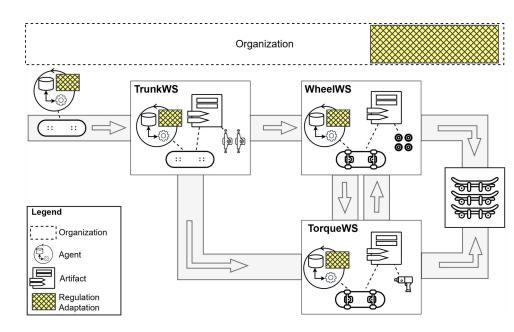
Organization Dimension (e.g., norms, roles, groups)


- ✓ global coordination
- X lacks flexibility

Hybrid Agent- and Interaction-Centric Regulation Adaptation

- Regulation representation
- Adapt capability
 - \circ detect \rightarrow agent
 - design → agent
 - o execute → agent/interaction
- ✓ flexibility and alignment
- **X** overhead

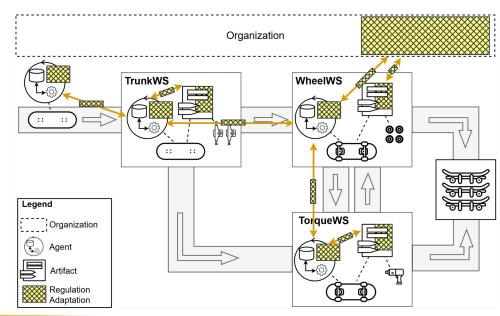
Agent and Interaction Dimensions



Hybrid Agent- and Organization-Centric Regulation Adaptation

- Regulation representation
- Adapt capability
 - \circ detect \rightarrow agent
 - design → agent
 - execute → agent/organization
- ✓ balance global and local adaptation
- * complexity

Agent and Organization Dimensions



Hybrid Agent-, Environment-, Interaction- and Organization-Centric Regulation Adaptation

- Regulation representation
- Adapt capability
 - detect → environment
 - \circ design \rightarrow agent
 - execute → agent/interaction/ organization
- ✓ balance global, local, automated, and alignment
 - **X** complexity

Agent/Environment/Interaction/Organization Dimensions

Conclusion and Future Work

Perspectives on Regulation Adaptation

agent-centric	✓ fast and localized	inconsistency
environment-centric	✓ embedded and automated	no decision
interaction-centric	✓ coordination and alignment	X overhead
organization-centric	✓ global coordination	inflexible
hybrid-centric	✓ combines benefits of multiple perspectives	complexity

Future work: adaptation of the regulation architecture, by switching from one perspective to another

19th Workshop-School on Agents, Environments, and Applications

Thank you for your attention!

Perspectives on Regulation Adaptation in Multi-Agent Systems: from Agent to Organization Centric and Beyond

*Elena Yan, *Luis. G. Nardin, **Jomi F. Hübner, *Olivier Boissier, ***Jaime S. Sichman *Mines Saint-Etienne, France, **Federal University of Santa Catarina, Brazil, ***University of São Paulo, Brazil

elena.yan@emse.fr

