REGULATION MANAGEMENT IN MULTI-AGENT SYSTEMS

Elena Yan^{1*}, Luis G. Nardin¹, Olivier Boissier¹, Jaime S. Sichman²

¹Mines Saint-Etienne, Univ Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR 6158 LIMOS, F-42023 Saint-Etienne France ²Laboratório de Técnicas Inteligentes (LTI), Escola Politécnica (EP), Universidade de São Paulo (USP), São Paulo, Brazil *elena.yan@emse.fr

View 1

-Centric

Dimensions Perspective

MAOP

View 3

(I. Motivation

A Multi-Agent System (MAS) is composed of autonomous agents interacting with each

→ Agents' autonomy enables flexibility but poses challenges for coordination and control

Regulations can be used in MAS to guide agents towards the overall objectives, while maintaining agents' autonomy

Research Questions:

RQ1. How to represent regulations in Multi-Agent Systems? RQ2. How to design regulation management mechanisms in Multi-Agent Systems?

II. Regulation Representation (RQ1)

Constitutive Rules (i.e., institutional interpretation of environmental facts) using **SAI** [2] programming language:

id: x count - as y while c

Regulative Norms (i.e., expected behavior of agents) and Sanction Rules (i.e., consequences for compliance or violation of norms) using **NPL(s)** [3] programming language:

norm
$$id: \varphi \to \psi$$
 if $\phi: sr_i(args)$.
sanction—rule $sr_i(args): \rho \to \text{sanction}(\alpha, \gamma)$.

III. Regulation Management Mechanisms (RQ2)

Perspectives on design regulation management mechanisms [4]:

Regulation Management Capabilities (CAP) Perspective:

- Regiment
- Enforce
- Adapt

MAOP Dimensions (DIM) Perspective:

- Agent-centric
- Organization-centric
- **Environment-centric**
- Interaction-centric
- Hybrid-centric

ARC

Architectural (ARC) Perspective:

- Fully-Centralized
- Semi-(De)centralized
- Fully-Decentralized

IV. Conclusions and Perspectives

Normative programming languages: provide expressive representations, enabling agents to reason about regulations **Regulation management:** different perspectives to consider when designing regulation management mechanisms in MAS

- \rightarrow What are the concepts required to develop self-regulated and self-adaptive systems in MAS?
- → How to deploy regulation management to support sustainability manufacturing systems in the Industry of the Future?

References

[1] Boissier, O., Bordini, R. H., Hubner, J., & Ricci, A. (2020). Multi-agent oriented programming: programming multi-agent systems using JaCaMo. Mit Press. [2] De Brito, M., Hübner, J. F., & Boissier, O. (2019). Coupling the normative regulation with the constitutive state management in Situated Artificial Institutions. The Knowledge Engineering Review, 34, e21. [3] Yan, E., Nardin, L. G., Hübner, J. F., & Boissier, O. (2025). An agent-centric perspective on norm enforcement and sanctions. In International Workshop on Coordination, Organizations, Institutions, Norms, and Ethics for

[4] Yan, E., Nardin, L. G., Boissier, O., & Sichman, J. S. (2025). A unified view on regulation management in multi-agent systems. In International Workshop on Coordination, Organizations, Institutions, Norms, and Ethics

Governance of Multi-Agent Systems (pp. 79-99). Cham: Springer Nature Switzerland. for Governance of Multi-Agent Systems.

Fully-Centralized

••• Semi-(De)centralized •••

Architectural Perspective

Partially funded by ANR-FAPESP NAIMAN project (ANR-22-CE23-0018-01, FAPESP 2022/03454-1)

Fully-Decentralized

other within a shared environment, eventually under one to multiple organizations [1].

Organization

Regulation Representation

Full Regulation Capabilities

Partial Regulation Capabilities

View 2

View 4

→ Regulation Data

− > Regulation Control